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Abstract

K-Medoids clustering is a widely utilized algorithm for partitioning data into clusters, particularly when
robustness to noise and outliers is crucial. Despite its advantages, traditional K-Medoids suffers from high
computational complexity, making it impractical for large-scale datasets. This paper proposes an enhanced
clustering method, termed Magnified K-Medoids, which integrates advanced medoid selection strategies,
outlier detection mechanisms, and an adaptive cluster determination approach. The proposed method improves
efficiency, scalability, and clustering quality, particularly for complex datasets with high dimensionality.
Performance evaluation using the Higgs Boson dataset demonstrates that the Magnified K-Medoids algorithm

surpasses traditional K-Medoids in clustering accuracy, execution time, and computational efficiency.
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1. Introduction

Clustering plays a significant role in unsupervised
learning, aiding in pattern recognition, anomaly
detection, and data segmentation. K-Medoids, a
robust clustering method, is a variant of K-Means
that selects actual data points as cluster centers rather
than using computed centroids. This characteristic
makes K-Medoids less sensitive to outliers. However,
its computational cost is relatively high due to
repeated pairwise distance calculations and iterative
refinements. Traditional K-Medoids struggles with
large datasets, where efficiency and scalability are
crucial.

To address these limitations, this paper introduces the
Magnified K-Medoids algorithm, incorporating the
following enhancements:

e Optimized Medoid Selection: A heuristic-based
initialization stratey for better initial medoid
selection, leading to faster convergence.

e Qutlier Detection: Incorporating a density-based
outlier detection method to reduce the impact of
noisy data points.

e Dynamic Cluster Number Determination: Utilizing

statistical metrics such as the silhouette score to
automatically determine the optimal number of
clusters.

2. Related Work

K-Medoids has been extensively studied and extended
in various ways:

e PAM (Partitioning Around Medoids): A classical
K-Medoids approach thatiteratively refines medoid
selections but is computationally expensive.

o CLARA (Clustering Large Applications): A
scalable variant that samples subsets of the data
but may lose accuracy in complex datasets.

o CLARANS (Clustering Large Applications based
on Randomized Search): A hybrid approach that
balances scalability and accuracy using a graph-
based medoid selection strategy.

Despite these advancements, traditional K-Medoids
remains inefficient for large-scale datasets. Our
proposed Magnified K-Medoids method builds
on existing work by integrating improved medoid
initialization, robust outlier handling, and adaptive
clustering strategies.
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3. Proposed Method
Optimized Medoid Selection

Instead of random medoid selection, we employ a
heuristic approach that chooses initial medoids based
on density estimation, ensuring a better distribution
across the dataset. This step significantly improves
convergence speed and clustering stability.

Outlier Detection To enhance clustering quality,
we incorporate a density-based outlier detection
mechanism such as Local Outlier Factor (LOF)
or DBSCAN. Detected outliers are either removed
or assigned separately, minimizing their negative
influence on clustering.

Dynamic Cluster Number Determination

Rather than relying on a predefined number of
clusters, our algorithm determines the optimal cluster
count dynamically using the silhouette score and
gap statistic, making it more adaptive to varying
datasets.

3.1 Algorithm Description
Algorithm 1: Magnified K-Medoids Algorithm

Input: Dataset D, Max Iterations, Outlier Detection
Threshold

Output: Cluster assignments for each data point

1. Apply an optimized heuristic for initial medoid
selection.

2. Perform outlier detection using a density-based
approach (e.g., LOF or DBSCAN).

3. Use the Magnified K-Medoids algorithm to cluster
the data:

o Assign each data point to the nearest medoid.

o Recalculate medoids as the most central point
in each cluster.

o Check convergence and repeat until stability is
achieved.

4. Dynamically determine the optimal number of
clusters.

5. Return final cluster assignments.

6. Experimental Results

4. Dataset Description
The Higgs Boson dataset, a well-known benchmark

Table 1. Comparison of Accuracy, Silhouette Score and Execution

dataset used in high-energy physics and machine
learning research. The dataset consists of 250,000
instances with 33 features, each representing
various physical properties derived from proton-
proton collision events. These features include
kinematic properties such as momentum, energy
levels, and spatial distributions, which are crucial in
distinguishing between signal and background events
in particle physics.

One of the key challenges posed by the Higgs Boson
dataset is its high dimensionality and inherent
noise, which makes clustering a non-trivial task. The
dataset contains both signal events (genuine Higgs
boson occurrences) and background events (false
positives caused by other physical interactions),
making it highly imbalanced. The presence of
irrelevant or redundant features further complicates
traditional clustering techniques, as they may distort
the clustering structure and degrade performance.

Given these complexities, the Magnified K-Medoids
algorithm was tested to assess its ability to handle
large-scale, noisy, and high-dimensional data
efficiently. The algorithm’s optimized medoid
selection, robust outlier detection, and dynamic
cluster determination were particularly beneficial
in improving clustering accuracy and ensuring better
separation between meaningful clusters.

This evaluation serves as a robust benchmark,
demonstrating the scalability and effectiveness of
Magnified K-Medoids in complex real-world datasets
beyond traditional low-dimensional clustering tasks.
Future studies may explore its application to similar
high-dimensional datasets across various domains,
such as bioinformatics, fraud detection, and image
segmentation.

5. Performance Metrics We Evaluated the
algorithm Based on

o Clustering Accuracy — Correctly assigned data
points.

e Execution Time — Computational efficiency of the
clustering process.

o Silhouette Score — Quality of cluster separation.

6. Results

Results indicate that Magnified K-Medoids improves
accuracy and reduces execution time compared to
traditional K-Medoids.

Time

Algorithm Accuracy (%) Execution Time (s) Silhouette Score
K-Medoids 70.2 60.1 0.52
Magnified K-Medoids 84.3 47.6 0.68
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Figure 1. Accuracy comparison of K-Medoids and Magnified K-Medoids
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Figure 2. Execution Time Comparison of K-Medoids and Magnified K-Medoids
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Figure 3. Silhouette Score Comparison of K-Medoids and Magnified K-Medoids

7. Conclusion

In this study, we introduced the Magnified K-Medoids
algorithm, an advanced clustering technique designed
to overcome the limitations of traditional K-Medoids.
By incorporating optimized medoid selection, robust
outlier detection, and dynamic cluster determination,
our approach enhances clustering accuracy, reduces
computational overhead, and improves scalability for
large datasets. These enhancements make Magnified
K-Medoids particularly suitable for real-world
applications that demand high precision and efficiency,
such as healthcare analytics, financial fraud detection,
bioinformatics, and large-scale image segmentation.

One of the key strengths of the proposed method is its
ability to handle outliers effectively, thereby improving
the robustness of clustering outcomes. Unlike standard

K-Medoids, which may be sensitive to noise and
suboptimal medoid selection, our approach ensures
that the most representative data points are chosen,
leading to better-defined clusters. Additionally, the
dynamic cluster determination mechanism eliminates
the need for pre-specifying the number of clusters,
making it more adaptable to datasets with unknown
structures.

The improved computational efficiency of the
Magnified K-Medoids algorithm also makes it a
promising choice for big data applications. With
the exponential growth of data in various domains,
traditional clustering methods often struggle to
maintain performance due to increased processing
time and memory constraints. Our approach, by
leveraging optimized medoid selection and enhanced
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data partitioning strategies, significantly mitigates
these issues.

Moving forward, future research will focus on
extending the Magnified K-Medoids algorithm to
distributed computing frameworks such as Apache
Spark and Hadoop to further enhance its scalability
for massive datasets. Additionally, we aim to explore
its effectiveness in high-dimensional spaces, such as
gene expression analysis in bioinformatics, satellite
image classification, and social network analysis.
Another promising direction is the integration of deep
learning techniques to further refine the clustering
process, particularly in complex domains like natural
language processing and computer vision.

In conclusion, the Magnified K-Medoids algorithm
represents a significant step forward in clustering
methodologies, offering enhanced performance,
scalability, and robustness. Its adaptability to various
domains makes it a valuable tool for researchers
and industry practitioners dealing with large-scale
and complex datasets. With ongoing advancements
in computational frameworks and machine learning
integration, this approach has the potential to set new
standards in the field of data clustering and analytics.
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